Name of the Faculty	:	SH. HARSH CHOUDHARY
Discipline	:	Mechanical Engg.
Semester	:	3 rd
Subject	:	Applied Mechanics
Lesson plan duration	:	15 Weeks(July 2018 to Nov 201

Lesson p	olan durat	ion : 15 Weeks(July 2018 to Nov 20	18)			
		Theory		Practical		
Week	Lecture Day	Topic (including assignments /tests)	Practical Day	Торіс		
	1 st	Concept of engineering mechanics definition of mechanics, statics, dynamics Application of engineering mechanics in		Overview of the subject, Importance in industry & Applications of the subject.		
Week-1	3 rd	practical fields Different systems of units (FPS, CGS, MKS and SI)		Overview of the subject,		
	4 th	th Their conversion from one to another e.g. density, force, pressure, work, power, velocity, acceleration		Importance in industry & Applications of the subject		
	1 st 2 nd	Simple Numerical Problems Fundamental Units and Derived Units.	1 st	Verification of the polygon law of forces using Gravesand's apparatus.		
Week 2	rd					
	3'"	quantities		Verification of the polygon law of forces using Gravesand's apparatus.		
	4 th	Revision				
	1 st	Mock Test		To verify the forces in different		
	2 nd	2 nd Laws of forces Definition of force, Bow's Notations, types of force		members of jib crane.		
Week 3	3 rd	Point force/concentrated force & Uniformly distributed force, effects of force, characteristics of a force.	and	To verify the forces in different		
	4 th	th Different force systems, principle of transmissibility of forces, law of super- position		members of jib crane.		
	1 st	Composition and resolution of coplanar concurrent forces, resultant force, method of composition of forces		To verify the reaction at the supports of a simply supported		

	2 nd	laws of forces, triangle law of forces	1 st	beam.	
Week4	3 rd	polygon law of forces - graphically, analytically, resolution of forces		To verify the reaction at the	
	4 th	Free body diagram Equilibrant force and its determination	2 ^{na}	supports of a simply supported beam.	
	1 st	Lami's theorem [Simple problems on above topics]	₁ st	To find the mechanical advantage, velocity ratio and efficiency in case	
Week 5	2 nd	Moment - Concept of moment Moment of a force and units of moment	I	of an inclined plane.	
Week S	3 rd	Varignon's theorem (definition only) Principle of moment and its applications	2 nd	To find the mechanical advantage,	
	4 th	(Levers – simple and compound, steel yard, safety valve, reaction at support)		of an inclined plane.	
Week 6	1 st	Parallel forces (like and unlike parallel force), calculating their resultant		To find the mechanical advantage,	
	2 ^{na}	Concept of couple, its properties and effects General conditions of equilibrium of bodies under coplanar forces	1 st	velocity ratio and efficiency of a screw jack.	
	3 rd	Position of resultant force by moment [Simple problems on the above topics]	2 nd	To find the mechanical advantage, velocity ratio and efficiency of a screw jack.	
	4 th	Revision of Chapter			
	1 st	Mock Test	1 st	Practice	
	2	friction, types of friction, force of friction, Limiting Friction	-		
Week 7	3 rd	Laws of static friction, coefficient of friction, angle of friction, angle of repose.	2 nd	Practice	
	4 th	Equilibrium of a body lying on a horizontal plane, equilibrium of a body lying on a rough inclined plane.			

	1 st	Calculation of least force required to maintain equilibrium of a body on a rough inclined plane subjected to a force: a) Acting along the inclined plane		To find the mechanical advantage, velocity ratio and efficiency of worm and worm wheel.	
	2 nd	 b) At some angle with the inclined plane 			
Week 08	3 rd	Ladder friction Advantages and Disadvantages of friction		To find the mechanical advantage, velocity ratio and efficiency of worm and worm wheel.	
	4 th	Methods of increasing/decreasing the force of friction.(Simple problems)	2 nd		
	1 st	Assignment		To find mechanical advantage,	
	2 nd	Test	1 st	velocity ratio and efficiency of single purchase crab.	
Week 09	3 rd	Centre of Gravity - Concept, definition of centroid of plain figures		To find mechanical advantage,	
	4 th	centre of gravity of symmetrical solid bodies, difference between centroid and C.G	2 nd	single purchase crab.	
	1 st	Determination of centroid of plain and composite lamina using moment method only	1 st	Practice	
Week 10	2 nd	centroid of bodies with removed			
	3 rd	Determination of center of gravity of solid bodies - cylinder	2 nd	Practice	
	4 th	Determination of center of gravity of solid bodies - cube, cuboid			
	1 st	Determination of center of gravity of solid bodies- sphere		To find out contor of growity of	
Week 11	2 nd	Determination of center of gravity of solid bodies- composite bodies and bodies with portion removed	1 st	regular lamina.	
	3 rd	Simple problems on the above topics	2 nd	To find out center of gravity of	
	4 th	Simple problems on the above topics		regular lamina.	

	1 st	Assignment on Chapter Centre of Gravity	a st	To find out center of gravity of irregular lamina.
	2""	Mock Test	T	
Week12	3 rd	Simple Machines- Definition of Simple and compound machine (Examples)	2 nd	To find out center of gravity of irregular lamina.
	4 th	Definition of load, effort, velocity ratio, mechanical advantage and efficiency of a machine		
	1 st	load, effort, velocity ratio, mechanical advantage their relationship, law of machines and efficiency of a machine	1 st	Practice
Week 13	2 nd	Definition of ideal machine, reversible and self locking machine		
	3 rd	Effort lost in friction, Load lost in friction	2 nd	Practice
	4 th	Determination of maximum mechanical advantage and maximum efficiency		
	1 st	System of pulleys (first, second)	ct	To determine coefficient of friction
	2""	Third system of pulleys	1"	between three pairs of given surface.
Week 14	3 rd	Determination of velocity ratio, mechanical advantage and efficiency		To determine coefficient of friction
	4 th	Working principle and application of wheel and axle, Weston's Differential Pulley Block	2 nd	surface.
	1 st	simple screw jack, worm and worm wheel	1 st	Practice
Week 15	2 nd	single and double winch crab.		
	3 rd	Expression for their velocity ratio and field of their application [Simple problems on the above topics]	2 nd	Practice
	4 th	Mock Test		

Name of the Faculty	:	SH. H.K.DHINGRA
Discipline	:	Mechanical Engg.
Semester	:	3 rd
Subject	:	BEEE
Lesson plan duration	:	15 weeks (from July, 2018 to November, 2018)

	Theory Practical					
Wook	Loctu	Tania (including assignments (tasts)	Dractic	Tonio		
WEEK	Lectu	ropic (including assignments / tests)		Горіс		
	re		al Day			
	Day		⊿ st			
	1.	Application and Advantage of	1.	Connection of a three-phase motor		
		Electricity: Difference between ac and		and starter with fuses and reversing		
		dc,		of		
	nd		nd	direction of rotation / Theory Work		
	2""	various applications of electricity	2""	Connection of a three-phase motor		
Week 1				and starter with fuses and reversing		
	3 rd	Advantages of electrical energy over		of		
	other types of energy			direction of rotation / Practical Work		
	1 st	Basic Electrical Quantities: Definition	1 st	Connection of a three-phase motor		
		of voltage, current, power and energy		and starter with fuses and reversing		
				of		
				direction of rotation / Theory Work		
	2 nd	Name of instruments used for	2 nd	Connection of a three-phase motor		
Week 2		measuring above quantities		and starter with fuses and reversing		
	3 rd	Assignment & Revision		of		
				direction of rotation / Practical Work		
	1 st	Electromagnetic Induction :	1 st	To test a battery for its charged and		
		Production of e.m.f.,		discharged condition. /Theory Work		
	2 nd	Idea of a transformer and its working				
Week 3		principle				
	3 rd	Transmission and Distribution System:	2 nd	To test a battery for its charged and		
		Key diagram of 3 phase transmission		discharged condition. / Practical		
		and distribution system		Work		
	1 st	Brief functions of accessories of	1 st	Identify the different faults in a		
		transmission line.		domestic wiring system / Theory		
	2 nd	Difference between high and low		Work		
Week 4		voltage				
		distribution system				
	3 rd	Identification of three-phase wires,	2 nd	Identify the different faults in a		
		neutral wire and earth wire in a low		domestic wiring system / Practical		

		voltage distribution system.		Work
	1 st	Identification of voltages between	1 st	Connection and reading of an electric
		phases and between one phase and		energy meter with supply and load
		neutral.		using ammeter / Theory Work
Week 5	2 nd	Difference between three-phase and		
		single-phase supply.		
	3 rd	Arrangement of supply system from	2 nd	Connection and reading of an electric
		pole to the distribution board		energy meter with supply and load
				using ammeter / Practical Work
	1 st	Function of service line, energy meter,	1 st	Connection and reading of an electric
		main switch, distribution board		energy meter with supply and load
-	2 nd	Domestic Installation: Various types of		using voltmeter / Theory Work
Week 6		domestic circuits		
-	3 rd	Various accessories and parts of	2 nd	Connection and reading of an electric
		domestic		energy meter with supply and load
		electrical installation		using voltmeter, wattmeter /
				Practical Work
	1 st	Identification of wiring systems,	1 st	Connection and reading of an electric
	2 nd	Staircase installation		energy meter with supply and load
				using wattmeter / Theory Work
Week 7	3 rd	Assignment & Revision	2 nd	Connection and reading of an electric
				energy meter with supply and load
				usingwattmeter / Practical Work
	1 st	Electric Motors and Pumps: Definition	1 st	Study of a distribution board for
		and various applications of single-		domestic installation / Theory Work
		phase and three-phase motors		
	2 nd	Connection and starting of three-phase		
Week 8		induction motors by star-delta starter		
	3 rd	Conversion of horse power in watts or	2 nd	Study of a distribution board for
		kilowatts		domestic installation / Practical Work
	1 st	Type of pumps and their applications,	1 st	Ohm's law verification / Theory Work
Wook 0	2 nd	Difference between direct online		
WEEK J		starter and star delta starter		
	3 rd	Characteristics and applications of	2 nd	Ohm's law verification / Practical
		servo motors.		Work
-	1 st	Assignment	1 st	Verification of law of resistance in
	2 nd	Electrical Safety: Electrical shock and		series / Theory Work
Week10		precautions against shock		
	3 rd	Treatment of electric shock	2 nd	Verification of law of resistance in
				series / Practical Work
	1 st	Concept of fuses and their	1 st	Verification of law of resistance in
14/		classification		parallel / Theory Work
week11	2 nd	Selection and application of Fuses		

	3rd	Concept of earthing and various types	2 nd	Verification of law of resistance in		
		of earthing,		parallel / Practical Work		
	1 st	Concept of earthing and various types	1 st	Draw V-I characteristics of P-N		
		of earthing,		junction diode / Theory Work		
	2 nd	Basic Electronics: Basic idea of				
Week12		semiconductors				
	3 rd	P and N type; diodes	2 nd	Draw V-I characteristics of P-N		
				junction diode / Practical Work		
	1 st	Zener diodes and their applications	1 st	Draw input and output characters of		
				a transistor / Theory Work		
Week13	2 nd	Transistor – PNP and NPN, symbols				
	3 rd	Identification of terminals of transistor	2 nd	Draw input and output characters of		
				a transistor / Practical Work		
	1 st	Current flowing in a transistor	1 st	Draw input and output characters of		
	2 nd	Characteristics and uses		a transistor / Theory Work		
Week14	3 rd	Characteristics and applications of a	2 nd	Draw input and output characters of		
		thyristor		a transistor / Practical Work		
	1 st	Revision	1 st	VIVA VOCE		
Wook1E	2 nd	Revision & assignment				
VVEEK15	3 rd	Test	2 nd	VIVA VOCE		

Name of the Faculty	:	SH. R.K.RAWAT & SH. VIPIN KUMAR
Discipline	:	Mechanical Engg
Semester	:	3 rd
Subject	:	Mechanical Engg. Drawing
Lesson plan duration	: 15	weeks (from July, 2018 to Nov, 2018)

		Practical		
Week	Practical	Topic (including assignments /tests)		
	Lect.			
	1 st	Limit, fits and tolerance-Need of limit, fits and tolerance, Maximum		
	2 nd	limit of size, minimum limit of size, tolerance, allowance, deviation,		
	3 rd	upper deviation, lower deviation, fundamental deviation, clearance,		
Week 1		maximum clearance, minimum clearance		
	4 th	Fits – clearance fit, interference fit and transition fit. Hole basis system,		
	5 th	shaft basis system, tolerance grades		
	6 th			
	1 st	calculating values of clearance, interference, hole tolerance, shaft		
	2 nd	tolerance with given basic size for common assemblies like $H_7/g6$,		
	3 rd	H ₇ /m6, H ₈ /p6		
Week 2	4 th	Basic terminology and symbols of geometrical dimensioning and		
	5 th	tolerances		
	6 th			
	1 st	Drawing of the following with complete dimensions, tolerances, bill		
	2 nd	of material and surface finish representation		
	3 rd	A) Universal coupling and Oldham coupling (Assembly) 1		
Week 3		sheet		
	4 th			
	5 th	Bushed Bearing (Assembly Drawing)		
	6 th			
	1 st			
	2 nd	Ball Bearing and Roller Bearing (Assembled Drawing		
	3 rd			
Week 4	4 th			
	5 th	Plummer Block (Detail and Assembly Drawing)		
	6 th			
	1 st			
	2 nd	Foot step Bearing (Assembled Drawing)		
	3 rd			
Week 5	4 th	Pulleys- Pulleys, Function of pulley, Types and materials of Pulley.		
	5 th	Free hand Sketch of Various types of pulleys.		

	6 th							
	1 st							
	2 nd	Fast and loose pulley (Assembly Drawing)						
	3 rd							
Week 6	4 th	Pipe Joints - Types of pipe Joints, Symbol and line layout of pipe lines						
	5 th							
	6 th							
	1 st							
	2 nd	Expansion pipe joint (Assembly drawing						
Week 7	3 rd							
	4 th							
	5 th	Flanged pipe and right angled bend joint (Assembly Draw	ing)					
	6 th		0,					
	1 st							
	2 nd	Lathe Tool Holder (Assembly Drawing)	(01 sheets)					
	3 rd	1	, , , , , , , , , , , , , , , , , , ,					
Week 8	4 th							
	5 th	Reading and interpretation of mechanical components ar	d assembly					
	6 th	drawings						
	1 st							
	2 nd	Sketching practice of bearings and bracket.	(01 sheet)					
	3 rd							
Week 9	4 th							
	5 th	Drilling Jig (Assembly Drawing)	(01 sheets)					
	6 th							
	1 st							
	2 nd	Machine vices (Assembly Drawing)	(02sheets)					
	3 rd							
Week 10	4 th	I.C. Engine Parts	(03 sheets)					
	5 th	Piston						
	6 th							
	1 st							
	2 nd	Connecting rod (Assembly Drawing)						
	3 rd							
Week 11	4 th							
	5 th	Crankshaft and flywheel (Assembly Drawing)						
	6 th							
	1 st	Boiler Parts	(02 sheets)					
	2 nd	Steam Stop Valve (Assembly Drawing	-					
	3 rd	1						
Week 12	4 th							

	5 th	Blow off cock. (Assembly Drawing)				
	6 th					
	1 st					
	2 nd	Mechanical Screw Jack (Assembled Drawing) (01 sheet)				
Week 13	3 rd					
	4 th	Gears - (2 Sheet)				
	5 th	Gear, Types of gears, Nomenclature of gears and conventional				
	6 th	representation				
_	1 st	Draw the actual profile of involute teeth of spur gear by different				
	2 nd	methods.				
	3 rd					
Week 14	4 th					
	5 th	Revision				
	6 th					
	1 st					
	2 nd	Revision				
	3 rd					
Week 15	4 th					
	5 th	Test				
	6 th					

Name of the Faculty	:	SH. RAJESH KUMAR
Discipline	:	Mechanical Engg.
Semester	:	3 rd
Subject	:	WT-I
Lesson plan duration	:	15 weeks (from JULY, 2018 to NOVEMBER, 2018)

	Theory					
Week	Lecture	Topic (including assignments /tests)				
	Day					
	1 st	Welding: Principle of welding, Classification of welding processes				
	2 nd	Advantages and limitations of welding				
Week 1	3 rd	Industrial applications of welding, Welding positions and techniques,				
	4 th	Welding symbols.				
	1 st	Gas Welding: Principle of operation				
Maak 2	2 nd	Types of gas welding flames and their applications				
Week 2	3 rd	Gas welding equipment - Gas welding torch, Oxy acetylene cutting torch				
	4 th	Blow pipe, Pressure regulators, Filler rods and fluxes				
	1 st	Arc Welding: Principle of operation, Arc welding machines and equipment				
Week 3	2 nd	A.C. and D.C. arc welding,				
	3 rd	Effect of polarity				
	4 th	Current regulation and voltage regulation				
	1 st	Other Welding Processes: Resistance welding				
	2 nd	Introduction to spot and seam welding				
Week 4	3 rd	Modern welding methods – TIG,				
	4 th	Modern welding methods – MIG				
	1 st	Ultrasonic welding, laser beam welding, robotic welding				
	2 nd	Welding Defects: Types of welding defects, methods of controlling				
Week 5		Welding defects,				
	3 rd	Inspection of welding defects				
	4 th	Revision & Assignment				
	1 st	Pattern Making: Types of pattern, Pattern material, Pattern				
Week 6		allowances, Pattern codes as per B.I.S.,				
	2 nd	Introduction to cores, core boxes and core materials				
	3 rd	Core making procedure				
	4 th	Core prints, positioning of cores				
	1 st	Moulding and Casting: Moulding Sand: Properties of moulding sand,				
		their impact and control of properties				

Week 7 2 nd Variou		Various types of moulding sand.			
	3 rd	Mould Making: Types of moulds, molding boxes,			
	4 th	Hand tools used for mould making,			
	1 st	Molding processes			
	2 nd	Molding machines: squeeze machine, jolt squeeze machine and sand			
Week 8		slinger.			
	3 rd	Casting Processes: Charging a furnace,			
	4 th	Melting and pouring both ferrous and non ferrous metals,			
	1 st	Cleaning of castings			
	2 nd	Principle, working and applications of Die casting			
Week 9	3 rd	Gating and Risering System: Elements of gating system			
	4 th	Pouring basin, sprue, runner, gates			
	1 st	Types of risers, location of risers, Directional solidification			
	2 nd	Melting Furnaces: Construction and working of Pit furnace			
Week 10	3 rd	Cupola furnace			
	4 th	Crucible furnace – tilting type, Electric furnace			
	1 st	Casting Defects: Different types of casting defects			
	2 nd	Testing of defects through magnetic particle inspection.			
Week 11	3 rd	Metal Forming Processes: Press Working: Types of presses, type of dies,			
	4 th	Selection of press die, die material. Press			
	1 st	Operations-Shearing, piercing, trimming, punching, notching,			
	-	shaving, gearing, embossing, stamping			
Week 12	2 nd	Forging - Open die forging, closed die forging, Press forging, upset			
		forging,			
	3 rd	Swaging, up setters, roll forging,			
	4 th	Cold and hot forging			
	1 st	Rolling - Elementary theory of rolling, Types of rolling mills,			
	2 nd	Thread rolling, roll passes, Rolling defects and remedies			
Week 13	3 rd	Extrusion and Drawing - Type of extrusion- Hot and Cold,			
	4 th	Direct and indirect Extrusion			
	1 st	Pipe drawing, tube drawing, wire drawing			
	2 nd	Plastic Processing: Industrial use of plastics, situation where used.			
Week 14	3 rd	Injection moulding-principle,			
	4 th	Working of injection moulding machine			
	1 st	Compression moulding-principle, and working of compression			
		moudling machine.			
Week 15	2 nd	Potential and limitations in the use of plastics			

			3 rd	Assignment & Revision		
			4 th	Revision		
				Lesson Plan		
Name	of the	e Fac	ulty :	SH. SARTAJ SINGH		
Discipl	line		:	Mechanical Engg.		
Semes	ter		:	3 rd		
Subjec	t		:	M.M.		
Lessor	n plan	dura	ation :	15 weeks (from July, 201	8 to Novem	ber, 2018)
			Theory			Practical
Week	Lectu Day	ire /	Topic (in	cluding assignments /tests)	Practical Day	Торіс
	1 st	:	Introduc Material	tion: Material, History of Origin,	1 st	Classification of about 25 specimens of materials/machine parts into(i)
						Metals and non metals
						(ii) Metals and alloys
Week 1	2 nd	ł	Seene of	Matarial Science different	and	Classification of about 25 specimens
	2		anginee	ring materials and	2	of materials/machine narts into(i)
			annlicati	ons		Metals and non metals
	3 rd	1	Classifica	ation of materials Thermal		(ii) Metals and allovs
	Ĵ		Chemica	I. Electrical. Mechanical		/ Practical Work
			properti	es		
	4 th	1	Present	and future needs of		
			material	s, Overview of Biomaterials		
			and sem	iconducting materials		
	1 st	:	Various	issues of Material Usage-	1 st	Given a set of specimen of metals
			Economi	ical, Environment and Social.		and alloys (copper, brass, aluminum,
						cast iron, HSS, Gun metal); identify
						and indicate the various properties
Week 2	200	ł	A	1	and	possessed by them. / Theory Work
	2		Assignm	ent	2	Given a set of specimen of metals
	3 rd	1	Crystallo	graphy: Fundamentals:		cast iron HSS Gun metal): identify
			Crystal,	Unit Cell, Space Lattice		and indicate the various properties
	4 th	1	Arrange	ment of atoms in		possessed by them. / Practical Work
			Simple C	Cubic Crystals		
	ct		I	1	c†	
Week 3	1"		Arrangei	ment of atoms in BCC	13	Study of heat treatment furnace. / Theory Work
	2 nd	,	FCC and	HCP Crystals		
	3 rd	1	Number	of atoms per unit Cell,	2 nd	Study of heat treatment furnace. /
			Atomic F	Packing Factor		Practical Work
	4 th	1	Revision			

	1 st	Overview of deformation behaviour	1 st	Study of a metallurgical microscope /
		and its mechanisms,		Theory Work
	2 nd	Behavior of material under load and		
Week 4		stress-strain		
	3 rd	Failure Mechanisms: Overview of		
		failure modes,		
	4 th	Fracture	2 nd	Study of a metallurgical microscope /
				Practical work
	1 st	fatigue and creep.	1 st	Study of Specimen polishing Machine
	2 nd	Assignment		/ Theory Work
Week 5	3 rd	Metals And Alloys: Introduction:		
		History and development of iron		
	4 th	History and development of steel,	2 nd	Study of Specimen polishing Machine
		Different iron ores,		/ Practical Work
	1 st	Introduction: History and	1 st	To prepare specimens of following
		development of iron and steel,		materials for microscopic
Week 6		Different iron ores,		examination and to Examine the
	2 nd	Basic Process of iron-making and		microstructure of the specimens of
		steel-making,		following materials :i) Brass ii)Copper
				iii)Grey iv)Malleable / Theory work
	3 rd	Classification of iron	2 nd	To prepare specimens of following
	4 th	Classification of steel		materials for microscopic
	•			examination and to Examine the
				microstructure of the specimens of
				following materials :i) Brass ii)Copper
	ct		ct	iii)Grey iv)Malleable / Practical work
	1 st	Cast Iron: Different types of Cast Iron,	1 st	To prepare specimens of following
		manufacture and their usage.		materials for microscopic
	2 nd	Steels: Steels and alloy steel,		examination and to Examine the
				microstructure of the specimens of
				following materials: v)Low carbon
Week 7				steel vi)High carbon steel vii) HSS /
				Theory Work
	3 ^{ra}	Classification of plain carbon steels	2 ^{na}	To prepare specimens of following
	4 th	Availability, Properties and usage of		materials for microscopic
		different types of Plain Carbon Steels		examination and to Examine the
				microstructure of the specimens of
				following materials: v)Low carbon
				steel vi)High carbon steel vii) HSS /
			- 1	Practical Work
	1 st	Effect of various alloys on properties	1 st	To anneal a given specimen and find
		of steel,		out difference in hardness as a result
	2 nd	Uses of alloy steels (high speed steel,		of annealing. / Theory Work

		stainless steel,)		
Week 8	3 rd	Uses of alloy steels (spring steel,	2 nd	To anneal a given specimen and find
Weeko		silicon steel)		out difference in hardness as a result
	4 th	Non Ferrous Materials: Properties and		of annealing. / Practical Work
		uses of Light Metals and their alloys		
	1 st	Properties and uses of White Metals	1 st	To normalize a given specimen and
		and their alloys		to find out the difference in hardness
Week9	2 nd	Assignment		as a result of normalizing / Theory Work
	3 rd	Test	2 nd	To normalize a given specimen and
	4 th	Revision		to find out the difference in hardness as a result of normalizing / Practical Work
	1 st	Theory of Heat Treatment: Purpose of	1 st	Classification of about 25 specimens
	and	neat treatment		of materials/machine parts into
Week10	2	Solid solutions and its types,		(iv) Ferrous and non ferrous alloys / Theory Work
	3 rd	Iron Carbon diagram,	2 nd	Classification of about 25 specimens
	4 th	Formation and decomposition of		of materials/machine parts into
		Austenite, Martensitic Transformation		(iv) Ferrous and non ferrous alloys / Practical Work
	1 st	Simplified Transformation Cooling Curves	1 st	To harden and temper a specimen and to find out the difference in
	2 nd	Processes hardening, tempering,		hardness due to tempering. / Theory Work
Week 11	3rd	Annealing	2 nd	To harden and temper a specimen
	4 th	Normalizing		and to find out the difference in hardness due to tempering. / Practical
	1 st	Case hardening	1 st	Practice And VIVA VOCE
	2 nd	Surface hardening		
Week 12	3 rd	Types of heat treatment furnaces	2 nd	Practice And VIVA VOCE
		required for above operations		
	4 th	Revision & Assignment		
	1 st	Engineering Plastics: Important	1 st	Practice And VIVA VOCE
Week 13		sources of plastics		
	2 nd	thermoplastic and thermo set and		
		their uses,		
	3 rd	Various Trade names of engg. Plastics,	2 nd	Practice And VIVA VOCE
	4 th	Plastic Coatings		

	1 st 2 nd	Advanced Materials: Composites- Classification, properties, applications Ceramics-Classification, properties, applications, Heat insulating materials	1 st	Practice And VIVA VOCE
Week 14	3 rd	Miscellaneous Materials: Properties and uses of Asbestos, Glass wool	2 nd	Practice And VIVA VOCE
	4 th	Thermocole cork, mica		
	1 st	Overview of tool and die materials, Materials for bearing metals,	1 st	Practice And VIVA VOCE
Week 15	2 ^{na}	Spring materials		
	3 rd	Materials for Nuclear Energy,	2 nd	Practice And VIVA VOCE
		Refractory materials.		
	4 th	Revision		